**Department of Physics** Periyar Arts College, Cuddalore **III B.Sc. PHYSICS Elective - Digital Electronics** 6-8-2020 10 AM- 11AM UNIT 5 Introduction to D/A and A/D Converters **Binary Weighted Resistor DAC** Slides prepared by JA

### ANALOG SIGNALS (Continuously Changing with time)

- Pressure Variations
- Light Intensity Variations
- Sound Signal
- Video Signal
- ECG Signals
- Temperature Variations
- Any Physical Quantity from transducers
- The real world deals with only Analog signals

### Voice Signal from Microphone (Analog Signal)



### Composite Video Signal (TV) (Analog Signal)



# ECG Signal (Analog signal) Electro Cardio Graph Human Heart beat pulses



### DIGITAL SIGNALS (Discrete signals, 0 or 1)

### Computer Data (Square, Rectangular pulses, Clock Pulses, Staircase waveforms)



 A digital to analog converter (DAC) converts a digital signal to an analog voltage or current output.



### CONVERSION A/D and D/A



### NEED FOR CONVERSION



### Binary Weighted Resistor DAC (4 bits)



Figure: Weighted resistors D/A converter

### WORKING of 4 Bit DAC

Currents flowing through Input Resistances, **R**, **2R**, **4R**, **8R**, as the inverting input of op-amp acts as Virtual ground,

1) 
$$I_{D} = \frac{V_{ref}}{R}$$
2) 
$$I_{C} = \frac{V_{ref}}{2R}$$
3) 
$$I_{B} = \frac{V_{ref}}{4R}$$
4) 
$$I_{A} = \frac{V_{ref}}{8R}$$

# Total current flowing through the feedback resistor R,

$$\mathbf{I} = \mathbf{I}_{\mathrm{D}} + \mathbf{I}_{\mathrm{C}} + \mathbf{I}_{\mathrm{B}} + \mathbf{I}_{\mathrm{A}}$$

Output voltage, Vo = - I R

Therefore,  $Vo = -(I_D + I_C + I_B + I_A) R$ 

Since the circuit is summing amplifier, its output is given by the following equation  $V_0 = -R \left(\frac{D}{R} + \frac{C}{2R} + \frac{B}{4R} + \frac{A}{8R}\right) V_{ref}$ 

Here  $V_{ref} = 8$  Volts

D, C, B, A are digital inputs, either 0 or 1

### **Output Voltage Calculations**

• D is the MSB,

Most Significant Bit

• A is the LSB, Least Significant Bit Case i When input DCBA = 0000, and  $V_{ref} = 8$  Volts then  $V_0 = -R(\frac{0}{R} + \frac{0}{2R} + \frac{0}{4R} + \frac{0}{8R})8$  $V_0 = 0$  Volts

### **Output Voltage Calculations**

### Case ii

When digital input of the circuit DCBA = 0001,

$$V_0 = -R(\frac{0}{R} + \frac{0}{2R} + \frac{0}{4R} + \frac{1}{8R}) 8$$

$$V_0 = -R(\frac{8}{8R}) = -1V$$

### Case iii

When digital input of the circuit DCBA = 0010

$$V_0 = -R(\frac{0}{R} + \frac{0}{2R} + \frac{1}{4R} + \frac{0}{8R}) 8$$

$$V_0 = -R(\frac{8}{4R}) = -2$$
 Volts

And so on....

In this way, when digital input DCBA changes from 0000 to 1111 (in BCD style), output voltage (Vo) changes proportionally.

 $V_{ref} = 8 \text{ volts}$ 

| D | С | В | Α | V <sub>o</sub><br>(volts) |
|---|---|---|---|---------------------------|
| 0 | 0 | 0 | 0 | 0                         |
| 0 | 0 | 0 | 1 | -1                        |
| 0 | 0 | 1 | 0 | -2                        |
| 0 | 0 | 1 | 1 | -3                        |
| 0 | 1 | 0 | 0 | -4                        |
| 0 | 1 | 0 | 1 | -5                        |
| 0 | 1 | 1 | 0 | -6                        |
| 0 | 1 | 1 | 1 | -7                        |
| 1 | 0 | 0 | 0 | -8                        |
| 1 | 0 | 0 | 1 | -9                        |
| 1 | 0 | 1 | 0 | -10                       |
| 1 | 0 | 1 | 1 | -11                       |
| 1 | 1 | 0 | 0 | -12                       |
| 1 | 1 | 0 | 1 | -13                       |
| 1 | 1 | 1 | 0 | -14                       |
| 1 | 1 | 1 | 1 | -15                       |

### **DAC Output Waveform**



FIGURE 11-3 Output waveforms of a DAC as inputs are provided by a binary counter.

### DAC Graph Digital input in x - axis, Anlog Output in y - axis



## RESOLUTION

 Defined as the smallest change that can occur in the analog output when digital input changes

 resolution for DAC is in bits number examples
 10-bit DAC have 10 bits resolution.
 10-bit DAC has a resolution smaller than 8-bits DAC

 Resolution can be expressed in two cases, either the voltage or Ampere and also percentages.

 Resolution is usually referred to the step size since it was a total change in Vout when the digital input changes from one step to the next step.

Its value is equal to the LSB wheighted

# Resolution Percentages (%)

Formula

| % Resolution                                    | = <u>Step Size</u> X 100%<br>Full Scale |  |  |  |  |
|-------------------------------------------------|-----------------------------------------|--|--|--|--|
| Full Scale = Number Of Step x Step Size         |                                         |  |  |  |  |
| Step Size = <u>Full Scale</u><br>Number Of Step |                                         |  |  |  |  |
| % Resolusi                                      | = <u>1</u> x 100%<br>Number Of Step     |  |  |  |  |
|                                                 | $= \frac{1}{2^n - 1} \times 100\%$      |  |  |  |  |
|                                                 |                                         |  |  |  |  |

#### Formula

Resolution = Step Size = Input bit for LSB

Vout (analog output)= K × Digital Input

| K = Total Voltage/Current | Or | Analog Output |
|---------------------------|----|---------------|
| Number Of Step            |    | Digital Input |

K = the factor of proportionality and is a fixed value for a DAC

Digital Input = Number of Step

Number of Step =  $2^n - 1$ 

Where;

n = Number of input bits

### ACCURACY

Manufacturer of digital to analog converter has a several ways to define accuracy. Two of them are often referred to Linearity Error and Full-scale error

#### Full Scale Error

The maximum deviation from the ideal DAC output value.

#### Examples

4-bit DAC has  $\pm 0.01\%$ FS accuracy and DAC fullscale is15V. So  $\pm 0.01\%$  x 15 =  $\pm 1.5$ mV.

This means that the DAC output will be different from the ideal value 1.5mV

### **BLOCK DIAGARAM**



### ANALOG TO DIGITAL AND DIGITAL TO ANALOG OF SOUND SIGNAL





### SIGNAL CONVERSION



### **BIT RESOLUTION**



QUESTION TIME Students can ask questions/ clarifications now HAVE A NICE DAY !!!